PyTorch 中级篇(1):卷积神经网络(Convolutional Neural Network)

PyTorch

PyTorch 中级篇(1):卷积神经网络(Convolutional Neural Network)

参考代码

yunjey的 pytorch tutorial系列

1
2
3
4
5
# 包
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
1
2
3
4
5
6
7
8
9
# 设备配置
torch.cuda.set_device(1) # 这句用来设置pytorch在哪块GPU上运行
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 超参数设置
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001
1
print(device)
cuda

MINIST数据集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 训练数据集
train_dataset = torchvision.datasets.MNIST(root='../../../data/minist/',
train=True,
transform=transforms.ToTensor(),
download=True)

# 测试数据集
test_dataset = torchvision.datasets.MNIST(root='../../../data/minist',
train=False,
transform=transforms.ToTensor())

# 数据加载器
# 训练数据 加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)

# 测试数据加载器
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

自定义 卷积神经网络

参考阅读

卷积层的计算细节可以看这篇
CNN中卷积层的计算细节

更详细的介绍,包括池化层的,可以看这篇
卷积神经网络中的参数计算

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# 搭建卷积神经网络模型
# 两个卷积层
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
# 卷积层计算
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
# 批归一化
nn.BatchNorm2d(16),
#ReLU激活函数
nn.ReLU(),
# 池化层:最大池化
nn.MaxPool2d(kernel_size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Linear(7*7*32, num_classes)

# 定义前向传播顺序
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
1
2
3
4
5
6
# 实例化一个模型,并迁移至gpu
model = ConvNet(num_classes).to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

训练模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 注意模型在GPU中,数据也要搬到GPU中
images = images.to(device)
labels = labels.to(device)

# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)

# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
Epoch [1/5], Step [100/600], Loss: 0.1291
Epoch [1/5], Step [200/600], Loss: 0.0968
Epoch [1/5], Step [300/600], Loss: 0.0393
Epoch [1/5], Step [400/600], Loss: 0.0646
Epoch [1/5], Step [500/600], Loss: 0.0740
Epoch [1/5], Step [600/600], Loss: 0.0696
Epoch [2/5], Step [100/600], Loss: 0.0408
Epoch [2/5], Step [200/600], Loss: 0.0071
Epoch [2/5], Step [300/600], Loss: 0.0650
Epoch [2/5], Step [400/600], Loss: 0.0279
Epoch [2/5], Step [500/600], Loss: 0.0141
Epoch [2/5], Step [600/600], Loss: 0.0352
Epoch [3/5], Step [100/600], Loss: 0.0073
Epoch [3/5], Step [200/600], Loss: 0.0716
Epoch [3/5], Step [300/600], Loss: 0.0376
Epoch [3/5], Step [400/600], Loss: 0.0233
Epoch [3/5], Step [500/600], Loss: 0.0459
Epoch [3/5], Step [600/600], Loss: 0.0058
Epoch [4/5], Step [100/600], Loss: 0.0181
Epoch [4/5], Step [200/600], Loss: 0.0847
Epoch [4/5], Step [300/600], Loss: 0.0789
Epoch [4/5], Step [400/600], Loss: 0.1064
Epoch [4/5], Step [500/600], Loss: 0.0511
Epoch [4/5], Step [600/600], Loss: 0.0647
Epoch [5/5], Step [100/600], Loss: 0.0101
Epoch [5/5], Step [200/600], Loss: 0.0263
Epoch [5/5], Step [300/600], Loss: 0.0121
Epoch [5/5], Step [400/600], Loss: 0.0828
Epoch [5/5], Step [500/600], Loss: 0.0515
Epoch [5/5], Step [600/600], Loss: 0.0401

测试并保存模型

1
2
3
# 切换成评估测试模式
# 这是因为在测试时,与训练时的dropout和batch normalization的操作是不同的
model.eval()
ConvNet(
  (layer1): Sequential(
    (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (layer2): Sequential(
    (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Linear(in_features=1568, out_features=10, bias=True)
)
1
2
3
4
5
6
7
8
9
10
11
12
13
# 节省计算资源,不去计算梯度
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Test Accuracy of the model on the 10000 test images: 99.01 %
1
2
#  保存模型
torch.save(model.state_dict(), 'model.ckpt')

如何用自己的图片和模型进行测试(单张)

1
2
3
4
5
6
7
#导入包
import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np

#resize功能
from scipy import misc
1
2
3
# 彩图转灰度
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
1
2
3
4
5
6
7
8
9
10
# 读取图像
srcPath = '8.png'
src = mpimg.imread(srcPath)# 读取和代码处于同一目录下的 图片
# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
# 原图大小
print(src.shape)

plt.imshow(src) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
(225, 225, 3)

png

1
2
3
4
5
6
gray = rgb2gray(src)    #转灰度

gray_new_sz = misc.imresize(gray, (28,28) )# 第二个参数如果是整数,则为百分比,如果是tuple,则为输出图像的尺寸
print(gray_new_sz.shape)
plt.imshow(gray_new_sz, cmap='Greys_r')
plt.axis('off')
(28, 28)


/home/ubuntu/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: DeprecationWarning: `imresize` is deprecated!
`imresize` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.
Use ``skimage.transform.resize`` instead.
  This is separate from the ipykernel package so we can avoid doing imports until





(-0.5, 27.5, 27.5, -0.5)

png

1
2
3
4
5
# 转换为(B,C,H,W)大小
image = gray_new_sz.reshape(-1,1,28,28)

# 转换为torch tensor
image_tensor = torch.from_numpy(image).float()
1
2
3
4
5
6
# 调用模型进行评估
model.eval()
output = model(image_tensor.to(device))
_, predicted = torch.max(output.data, 1)
pre = predicted.cpu().numpy()
print(pre) # 查看预测结果
[8]

友情Tip:查看Pytorch跑在哪块GPU上

遇到cuda runtime error: out of memory时,可以查看一下跑在哪块GPU上了。

然后用nvidia-smi看一下是不是GPU被占用了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 这一段可以用来查看当前GPU的情况
import torch
import sys
print('__Python VERSION:', sys.version)
print('__pyTorch VERSION:', torch.__version__)
print('__CUDA VERSION')
from subprocess import call
# call(["nvcc", "--version"]) does not work
! nvcc --version
print('__CUDNN VERSION:', torch.backends.cudnn.version())
print('__Number CUDA Devices:', torch.cuda.device_count())
print('__Devices')
call(["nvidia-smi", "--format=csv", "--query-gpu=index,name,driver_version,memory.total,memory.used,memory.free"])
print('Active CUDA Device: GPU', torch.cuda.current_device())

print ('Available devices ', torch.cuda.device_count())
print ('Current cuda device ', torch.cuda.current_device())
__Python VERSION: 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56) 
[GCC 7.2.0]
__pyTorch VERSION: 0.4.1
__CUDA VERSION
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
__CUDNN VERSION: 7102
__Number CUDA Devices: 2
__Devices
Active CUDA Device: GPU 1
Available devices  2
Current cuda device  1