PyTorch

PyTorch 中级篇(4):双向循环神经网络(Bidirectional Recurrent Neural Network)

参考代码

yunjey的 pytorch tutorial系列

双向循环神经网络 学习资源

论文原文
Bidirectional recurrent neural networks

原文PDF

其他资源

吴恩达Deeplearning.ai项目中的关于Bidirectional RNN一节的视频教程
RNN11. Bidirectional RNN

博客 双向循环神经网络及TensorFlow实现

Pytorch实现

使用双向循环神经网络 many to one 的形式解决MINIST数据集 手写数字分类问题。

1
2
3
4
5
# 包
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
1
2
3
4
# 设备配置
# Device configuration
torch.cuda.set_device(1) # 这句用来设置pytorch在哪块GPU上运行
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
1
2
3
4
5
6
7
8
9
10
# 超参数设置
# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003

MINIST数据集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 训练数据
train_dataset = torchvision.datasets.MNIST(root='../../../data/minist/',
train=True,
transform=transforms.ToTensor(),
download=True)

# 测试数据
test_dataset = torchvision.datasets.MNIST(root='../../../data/minist/',
train=False,
transform=transforms.ToTensor())

# 训练数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)

# 测试数据加载器
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

搭建双向循环神经网络(many to one)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class BiRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BiRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, num_classes) # 隐层包含向前层和向后层两层,所以隐层共有两倍的Hidden_size

def forward(self, x):
# 初始话LSTM的隐层和细胞状态
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 同样考虑向前层和向后层
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device)

# 前向传播 LSTM
out, _ = self.lstm(x, (h0, c0)) # LSTM输出大小为 (batch_size, seq_length, hidden_size*2)

# 解码最后一个时刻的隐状态
out = self.fc(out[:, -1, :])
return out
1
2
# 实例化一个Birectional RNN模型
model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device)
1
2
3
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

训练模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)

# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)

# 反向传播和优化,注意梯度每次清零
optimizer.zero_grad()
loss.backward()
optimizer.step()

if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
Epoch [1/2], Step [100/600], Loss: 0.7892
Epoch [1/2], Step [200/600], Loss: 0.3596
Epoch [1/2], Step [300/600], Loss: 0.1456
Epoch [1/2], Step [400/600], Loss: 0.0966
Epoch [1/2], Step [500/600], Loss: 0.0878
Epoch [1/2], Step [600/600], Loss: 0.1667
Epoch [2/2], Step [100/600], Loss: 0.0199
Epoch [2/2], Step [200/600], Loss: 0.0555
Epoch [2/2], Step [300/600], Loss: 0.0203
Epoch [2/2], Step [400/600], Loss: 0.0550
Epoch [2/2], Step [500/600], Loss: 0.0468
Epoch [2/2], Step [600/600], Loss: 0.1018

测试和保存模型

1
2
3
4
5
6
7
8
9
10
11
12
13
# Test the model
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
Test Accuracy of the model on the 10000 test images: 97.73 %
1
2
# 保存模型
torch.save(model.state_dict(), 'model.ckpt')